KINETIC EVIDENCE FOR A TWO-STEP MECHANISM OF AMIDE HYDROLYSIS¹

Richard L. Schowen, H. Jayaraman² and Larry Kershner³ Department of Chemistry University of Kansas Lawrence, Kansas (Received 26 November 1965)

The previously available evidence on the mechanism of base-catalyzed amide hydrolysis is consistent with the generally accepted,⁴ two-step mechanism I or the one-step, concerted-displacement mechanism II. The

Mechanism I.

Mechanism II.

 $R_1 CONR_0 R_3 + H0^- \xrightarrow{0} [H0 - - C - - NR_0 R_3] \longrightarrow products$ R_1

discovery by Bender and Ginger⁵ that carbonyl- 0^{2n} exchange of benzamide in basic solution occurs more rapidly than does hydrolysis, often cited in favor of I, can be reconciled with II by noting that the addition intermediate B should expel the weaker base hydroxide more readily than

497

Our recent observation⁷ of superimposed general base catalysis in the hydrolysis of 2,2,2-trifluoro-N-methylacetanilide (A: $R_1 = CF_3$, $R_2 = CH_3$, $R_3 = C_6H_5$) is consistent with I, if the formation or decomposition of B is general-base catalyzed, or with II, if attack of the nucleophilic hydroxide is general-base catalyzed.

We have now extended our measurements to sufficiently high base concentrations to permit a distinction of these possibilities. The data in the first two columns of Table I show the reaction to become first-order in base at high base concentrations, requiring modification of the previous rate law^{7a} to eq. 1, which reduces to eq. 2 in unbuffered solution. The third column of

$$-d[A]/dt = [A] \left\{ k_0 + [HO^-] \frac{k_a(k'_1 + \Sigma k'_i[B_i])}{k_a + k'_1 + \Sigma k'_1[B_i]} \right\}$$
(1)

$$k_{obs} = k_0 + [H0^-] \left\{ \frac{k_a(k_1 + k_2[H0^-])}{k_a + k_1 + k_2[H0^-]} \right\}$$
(2)

Table I shows values of k_{obs} calculated from eq. 2 with the values of the rate constants given in footnote a of the table. The agreement is good. Eqs. 1 and 2 may be derived from mechanism I (after allowance for the small k_0 term found before^{7b}) by application of steady-state kinetics, with $k_e = k'_1 + \Sigma k'_1[B_1]$ in general and $k_e = k'_1 + k'_2[H0^-]$ in unbuffered solutions. Here $k'_1 = k_{-a}k_1/k_a$. In solutions of low basicity, the base-catalyzed conversion of B to products is rate-determining. At higher basicities, this process exceeds in rate the base-independent reversion of B to reactants and the addition of base to A becomes the rate-determining process.

TABLE I.

10 ³ [НО ⁻], <u>М</u> .	10 ⁴ k _{obs} , sec. ⁻¹	10 ⁴ k sec. ⁻¹) ^a
1.5	0.57	0.59
3.0	1.53	1.57
4.5	2.75	2.78
6.0	4.02	4.11
8.0	5.83	6.02
10.5	9.2	8.5
12.0	9.8	10.1
13.5	12.6	11.7
15.0	13.5	13.3
20.0	17.6	18.8
25.0	22.8	22.4
30.0	26.8	29.9
35.0	34.5	35.5

Hydrolysis of 2,2,2-Trifluoro-N-methylacetanilide at 25°

a. Calculated from eq. 2 with k₀ = 5 x 10⁻⁵ sec.⁻¹, k₁ = 2 M.⁻¹ sec.⁻¹, k₂ = 2000 M.⁻² sec.⁻¹ and k_a = 11.5 M.⁻¹ sec.⁻¹.

These results, by demonstration of a change in rate-determining step, require that 2,2,2-trifluoro-N-methylacetanilide undergo hydrolysis by a two-step mechanism, presumably I. We have presented arguments^{7b} that the mechanistic behavior of this amide may be generalized and we therefore conclude that the basic hydrolysis of amides is a two-step process. This mechanism is in agreement with the more complex kinetic scheme found by Mader⁸ for 2,2,2-trifluoroacetanilide and with the demonstration by Jencks and Gilchrist⁹ of a two-step pathway for the reaction of hydroxylamine with amides.

REFERENCES

 This research was supported by the National Institutes of Health under Research Grant No. CM-12477-01 and carried out in part at the Computation Center of the University of Kansas.

- 2. Madras Christian College, Madras, India; Fellow of the Institute of International Education.
- 3. National Defense Education Act Predoctoral Fellow.
- J. Hine, <u>Physical Organic Chemistry</u>, 2nd ed., McGraw-Hill, New York, 1962, pp. 291-2.
- 5. M. L. Bender and R. D. Ginger, J. Amer. Chem. Soc., 77, 348 (1955).
- 6. C. G. Swain, talk before the 144th Meeting of the American Chemical Society, Los Angeles, March 31-April 5, 1963. The remarks of R. Breslow, <u>Tetrahedron Letters</u>, 399 (1964) are also pertinent.
- (a) R. L. Schowen and G. W. Zuorick, <u>Tetrahedron Letters</u>, 3839 (1965);
 (b) paper to be published in <u>J. Amer. Chem. Soc</u>.
- 8. P. M. Mader, J. Amer. Chem. Soc., 87, 3191 (1965).
- 9. W. P. Jencks and M. Gilchrist, J. Amer. Chem. Soc., 86, 5616 (1964).